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Abstract

An extended stability criterion for cross-coupled, symmetrical,

-dimensional, nonlinear and time-varying systems is presented.

-z effects of time variation as well as cross-coupling on the

tem's stability are discussed.
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I. Introductioﬁ

An extension of the results of Newman [1] to the nonlinear case
was derived, in [5], using the frequency-domain approach of the
Popov type. It was shown that the results of Lindgren and Pinkos [2]
are unneceséarily restrictive by requiring the same slope for the
Popov lines. It was also shown that stabilization of an otherwise
unstable system can be achieved by the introduction of an appropri-
ate cross coupling. The contribution of this paper is to extend
the stability determination fof'cross-coupled symmetrical two-
dimensional nonlinear systems illustrated in Fig. 1, to the case
whare the nonlinearities may be also time-varying.

The proof of the Theorem used here is based on a new lemma,
w2Zch is developed for the first time, for symmetrical positive
zzmi-definite matrix multipliers rather than diagonal ones. A
Tzchnique is developed where stability expressions is achieved
Through mathematical manipulation on a transformed version of the

problem rather than on the driginal.




II. Systenm Descriptibn
Figure 1 shows the structure of the autonomous, continuous-
time, symmetrical, two-dimensional, nonlinear and time-varying

system under consideration. It is assumed that the following hold:

(Al) Each of the linear time-invariant, nonanticipative subsystems
Si(i = 1,2,3,4), with fj[cj(t),t] (j = 1,2) as an input and yi(t)

as an output, is represented in the state space form as:

x;(t) = A, x;(t) - by fj[cj(t),t] j=1 when: i=1,2
. and
S, . .
i j=2 when: 1i=3,4
g.(t) =cf  x.(t) ¥ i=l 4
i =i =i 2ot
. th . .
xhere: Ai - ng order . Square, asymptotically stable matrices
with real, time-invariant elements.
bisc; - nith order Column vectors with real, time-invariant
elements,
X5 - nith order Vectors of the

cj(t) Scalar time functions.




In addition, it is further assumed that [A;, bj1's are completely

controllable and that [Ai’ ci]'s are completely observable.

(A2) The noninteracting nonlinear and time-varying elements are
characterized by their individual input-output relations. The
output of each nonlinearity is given by fj[cj(t),t] which is a real

continuous function, such that:

(a) 0 < oj(t)fjﬁf (£),tl < Kjgi(t), ?'dj(t) # 0,

&) fj(o,t) -0

“rz2liminary Consideration

(1) Based on the linear subsystem description of (Al), the

'/\ L) _l hY .
18; |Hy(s) =Cf  (SI - A b,f > (i=1,2,3,4) .

However due to the symmetrical nature of the syStém: 'S

4

1= S4 and

so that the transfer function associated with the sub-

2 3

system is as follows:

S, =8
S. +H,S,-H,, S, *H,S *H

1 1’ 72 2° 73 27 74 -

(2) The system in Fig. 1 is equivalent to the systems in

Fig. 2,




A I

Hy ()

W(s) = I

_Hl(S)

Hy(s)

iT[g(t),t] = {f,lo (t),t], f2[02(t),t]} .

(3) To facilitate the analysis we apply the orthogonal trans-

formation

|
=2 | L L} (note: 7T =1y
M2 1) -1

=G the system's transfer matrix W to yield (see Lindgren

(5] -

Rcotenberg a diagonal matrix W. Simultaneously g(t) and

[2]

~ A

ilo(t),t] are transformed (see Fig. 3) to o(t) and flo(t),t],

respectively:

A

o(t) =T g(t)

flo(t),tl =T . :E_[é(t),t] .

~

(4) 1In the sequel we will also define a system S as having the
same structure as in Fig. 2 with W(s) replaced by W(s) and flo(t),t]

A A
replaced by flo(t),t].




IITI. Stability Criterion
The proof of the stability criterion depends heavily on the

following two lemmas:

[4]3

Lemma I: (Anderson & Moore

~

Let Z(s) be an nxn matrix of real functions of a complex variable s,
with Z (®) < ®. Let {F,G,M,J} be a realization for Z(s), in the

sense that:

7(s) = J +M(sI-F) T G ,

~27h F square and of minimal dimension

~ : P

ZI Z(s) 1is positive real, (J+JT) nonsingular, Z(s) possess no

“i-axls poles, and Z(jw) is positive definite.
. . . 13 .
Then, there exists a matrix P(t) = tlﬂm ﬂ(t,tl), where ﬁ(t,tl) is
. 1
the solution of

e, = mEE-G(I+T) BT T & [FT-MeanD) 6T 1 o+ macan Tyt T

+ M(J+JT)_1 M

with ﬂ(tl,tl) =0 .




Lemma IL: The system of Fig. 6 is stable if there exist
symmetrical, positive semi-definite matrices X 2 0, ¢« 20, B8 =0,
transformable (by a linear time-invariant and non-singular transfor-

mation T such that Tt = T—l) to a diagonal form:

¢=T.aq- T = diag{al ""an}

B=T:8:-7"= diag{p; ... B}

K=T.XK: T%'= diag{% . fk-} |

_ 1 n
%3

za22h that: o = O,Bi =0, ozi+Bi - 0 and - E; is not a pole of any
s e .th
-izment of the 17 row of W(s), where

W(s) AT . &(s). 7t = diag{Hl(s),..., Hn(s)}

~

Z(s) @« K + (248-s)W(s) is positive real. (1)

=g

Provided that: s
T

~ "T ~ .
cT,” A R g {of (1;®)
£T(glt) ce {9’__ - K- i(glt)} >J‘ [B—-—tl——] - g d
)




SN

Proof: The transfer matrix W(s) (see Fig. 53 possesses a

A A A

minimal realization {F,G,H} satisfying:

where

?

sl
il
M
e

e
i

—-Xl(t)—w
X, ()

x3(t)

L)

W(s) = e (sI—P)'l G,

AL

—A, O { — —bl
0 Al | . 0
5 G =QGT A
. | A, 0 =10
o i
5 i 0 AQ_J _b2
T | T
Cl O | 62 O
T ’ T
(e} C } (] C
fl[crl(t) ,t]
and flo(t),t1 A
- f2[02(t),t] .

note: £[;(t),t] A 771 flo(t),t]

~

o(t) A T_:L o(t) .




o -

Then the state space representation of the system'S that is charac-

‘terized in Fig. 5 is:

(o] A A A
. x(t) =F x(t) - G flo(t),t]
S ~ A
=H  x(t)

a(t)

In order to prove lemma II, that supplies the sufficient condition

~

for the stability of the system S (and S), we choose as a tentative

Liapunov function:

. [e)
vix(t),tl = xT(t) x(t) + f £7In,el B dn (3)
(o]

p(t) = pi(t) >0

el -~

27, from the definitions of f, ¢ and T

b

-1

- vIx(t),t] [T

I
X
L]
[%

+

gn,0)1F g arT

.61 {Ter Man

£n,t) 8 dn

=X p X+

I
I
-3
i)
%
+
«—Ja 0 ——ja © =——Iq
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“From %he;ﬁféﬁéft1554ofgthé diagdﬁal matrix ’b~ and that of P(t),
it is obvious that the above choice of the tentative Liapunov

function fulfills the conditions:

(1) vIx.tl >0, v |[x]| #0
(2) Vlo,tl =0

(3) VIlxl » =,e =<
Differentiating VIx(t),t] of equation 4 with‘respect to time, yields:

PUIN of (M,t)-T &
-— V[x(t) t] = prx + X px + X px + fT(c t) Bc + j [___,.__] B dl .

0O

<nestituting for X(t) and collecting terms, yields:

— Ulx(t),t] = X [Fp+pPedIx ~2x"[pC - 1/2FTHp1-£ pHTGE

j [af(n diny _B an .

The term:

~

5 {5 -%x £5,c] =

IH\ ?

¢t
g

Lay
Q>

>

can be easily shown to equal the condition:

. f.lo.,tl]
= £ [o,t] a {o-k i(c:t)} =z ozifi[c;i,t] o - ~i kl 1 20
' i

i
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and

in’the form:

T[ AA—|
2X" |5 H «f f[o t]

700,61 {Sax + K &) £18,¢]

i?[§,t] o {&~£ %(Q,t)} =

from both sides of V to yield:

V(x(E),t) = ET[Pp+pP+p]5—2§T|:pG - i &+ FHB) | £(B,0)
A ~ AA A ~ AA A ~ af(’n t) T -~ ~
- ~ l A ~ ~
- o[ HE K ¢ BHTG) + FE K + BHTG)T_’ £(5,t) +f [ B dn
- fToe) & [6,8) & [0 -X £(5,6)]
= _2 — — =\
nnaTa -]Q'- r‘—I o + FTHB] =M and % [& K + BHTG]A J

If we use,

for the matrix function P(t) the solution of the
differential equation:

- ey = nir-aaw®) " s e 6T m

B TR TN L R LT VIO PR LD SR TE I
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lim

which is guaranteed by lemma I, in the form p(t) = Lo me,t
1

l)’
then it is easy to verify that:

b+ DF 4 FL p = pG(J+I) M + M(I+t) TeTp

pG(I+IT) teT p - (gt Mt

]

= - (M-pG)(J+IT) Lut- GTp>

So that:

ae),e] = - xTeu-p0) (0saTy Tl GTp) %75 (PG-MVE(S, £)

~

- T Bf(ﬂ t)
- Z7o,t)d+d7 ] f(o,t) - I(c t) & [G-K £(o,t)1 + B dn

(o]

)

(@)
iy

)

o]

AT}
-
1=

(Ve

Ix(0),83 = - (08 1onD L - £6T, 00 (o) Taw el cTp ke £

{f (o,t) @ [c—K f(c £)] - f [af(ﬂ’t)JT é dﬁr

0

(4




- 13 -

Clearly the first term (Eq. 4) is nonpositive, and if the ‘conditions

on the nonlinearity £[5,t] are such that

AT A
~ ~n B£ (n:t) ~oon
£706,61 & (6K £3,0} > [ —50— B a1 (5)
O

holds, then the nonpositive nature of V is guaranteed..

~ ~

However, from the definitions of £, ¢, &, B, and X it is clear
hat the inequality [5] holds if ce -

B dl

af" (M,
[c t] o [o -X f(o,t)]1~ J—————————

o and B and X are diagonal matrices.

The symmetrical continuous-time, two-dimensional, nonlinear

ol

Time-varying autonomous systems of Fig. 1 is stable for:

0 afT <n ©
Tlo(e),e] alo(e) - X £lo(e),£1] >j ——— 8 d1
" .

£
fity

Z 45 = diag]> X
dlag{al ols B = dlag{BlBQ}, K = dlag{Kl_ K;}

wnere
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if there exist scalars q; and q, such that:

(L) Re{l+jwa}{Hl(jw) + HQ(jw)} + %— (}—}J: + f;—) =20

| Rel 1450, }{(H () +‘H2(jw)} + %‘(J; + 2]

[Re{l+jwq2}{Hl(jw) - H,(jw) {+ % (El—+il—-]

1 2
(a + o ) 2
- 1 - AT 20

1[92 @ )

5

nj Of.[M.(t),t] f.lo.(t),t]

(3) Q..j . %t d'ﬂj <fj[oj(t),t] [oj(t), 1 13< ],j:l’Q
3 _ 5

In the case where kl = k2 = k conditions 2, 3, and 4 are reduced to:

(27) Rell+jwq }{H (Ju) + Hy(ju)} +

=
v
o

(2 RelL+jwg,}{H (3w) - Hy(jW)} + £ = 0

. £.(0.(t),5)~ T RF.(M.,b)
{37) fj[oj(t),t] [oj(t) - = JK _l> qj f 1)
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Proofs - Promrapgiying Lemma II for the system 'S;‘it is clear that

the system S is stable for all f[o(t),t] satisfying the

inequality:

O e [MT(t),c] ~ -
B an

A

£lo(t),t] o {3 - X £E3<t),t]} > [ —=
' O

if there exist symmetrical positive semi-definite matrices

~ "~ A

=0, B =20, (e+B) = O such that:

Z(59) + Zo(-jw) = 0

Z(s) A aK + (¢ + 8 s) W(s) is real
“nz interpretation of these conditions, for the two inputs-two

cutputs case, in terms of £[0o(t),t], X, H,(s) and Hy(s) in Fig. 1

ares




- =
o 0

1

X =
o &
L 2_
i, - 1 _ 1
S_L |k Kok
2 .

1 _ 1 L
_kl k2 ; kl k2_

.7h this choice of R

o,
171 1
2 \1‘{ + 12'2‘> + () + B18)G(s)

2(8) = | Smmmmmmmmmmmmmmem oo

i

a ]

2 1 1 '

O EEn

whare

Gl(s) A Hl(s) + HQ(S)
GQ(S) A Hl(s) - H2(s)

o
| ]
%‘2‘ (1?1‘1‘ ’ E%) T (@y+By8)Gy(s)

s clearly symmetric and positive definite.
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so that:

11 . L 17%) 1
a (—— + ——) + 2Re(a, +jwB. )G, (jw) R N <__ - =
AV O 1FIP 06, (0 7 Kk,
2(JW) 42(=JW) = = mmmm e oo
o, ) ’
1% (1 1) (e ) - -
2 (kl K L %\k] Tk, /ARG, (3)
Now
Z(jw) + Z(-jw) = 0
Troliles
. : : . 1/1
i Re(L + Jwa){H,(59) + Hy(3m} + 2 (2 + &) 2 0
1 Ko
NGV N VN
S 5 + Re(L + 30q)){H (30) + Hy(5w)} ]

[(l/kl + 1/k,)

5 + Re(l + jwa){Hl(jw) +'H2(jw)}]

1 [“ﬁaz’ (& - L)f .
ala2 2 kl k2

Condition 3) is directly derived from applying the orthogonal

transformation T (see section II), so that
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00,61 o {0 - K £[0,¢7)

Il

= f[o,£] « {o-x£[o,tl}

2 -
f.lo.(t),t]
_ ]
= Z o fj[oj(t),t] {Gj(t) - }ij }
j=1

and in the same way:

- , o
o - o T 2 3
+r £ ,E] T~ o = (FI(E) e o OfLIM.(H,t]
L ¢ Boal=] |~ —, 8dl-= E: 85— dn,
o} e} j=1
=z yileld:
3 aE.IM.c0),t] £.[0.t),t]
. i . | ’
SHrs L an, < £500,(6),61 {o,(t) o }
(o]
.
wnere gj A 5? , (3 =1,2) .

Conditions (11), (2%) and (3") follow by substituting K; =K, & X.

Thus the theorem is proved.

Tt ttoei & frl ek
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The conditions 1),2) can now be interpreted in the Popov plane.
The forbidden region which the frequency responses Gl(jw) é Hl(jw)_+
H2(jw) and Gz(jw) = Hl(jw) - H2(jw) are‘not‘allowed»to enter is |
shown in Fig. 7. The intersection ofvthé Popov linés Qith the nega-

tive real axis is common to both systems and gives the numerical

value of k, provided that condition 32 holds. Condition Bl'giVes the

tnzde-of f between the nonlinearities and their time derivative
w72y which the stability (Popov type) still holds. This result is
rzneralization of the one reported in [5].

From the analysis it is evident that the stability properties of

- given coupled system depend on the characteristics of the coupling

-..73). The stability of the system can be iImproved by the introduction
y

= such coupling, HQ(S), that shifts simultaneously the modified

Dolar plots of H,(jw) + Hz(jw) and H,(jw) - H,(jw) to thé‘right’of _

1 1( o(

the previous Popov lines, such that the new intersection of the Popov

lines with the negative real axis is closer to the origin.




"V.'iCdnciuéiQﬁf'

In this paper an improved stability criterion has been derived
and for the symmetric two-dimensional nonlinear time varying
system. This criterion allowélautonomous, continuous-time. The
intersections of the lines with the real axis are the same and give
the maximum allowable gain.of the nonlinearities, The flexibility
in choosing the élopes results in an improved gain factor. 2 Some
consideration is also given to the effect of the cross coupling on
the stability of the one-dimensional system (without,cross—coupling). 
Iz can be concluded that the stability of a one-dimensional system
E;{s) can bs improved by introducing a cross coupling HQ(S) if the
Z-2mov plots of Hl(s) + H2(s) and Hl(s) - H2(s) are to the right of
-~z plot of Hl(s) in the Popov plane, as long as these slopes are

itive.

n

~ Extention of the Popov Criterion to nonlinearities that are time

varying as well, provided that certain trade-off between the non-
linear gain and its time derivative is maintained.

N

From one side but also puts some restrictions on the trade-off
between the nonlinear element and its time derivative, so that
the slopes of the Popov lines have an additional physical meaning
that supplies the actual above mentioned, trade-off.
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